metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xing-You Xu,^a* Tong-Tao Xu,^b He-Ping Ma,^a Xi-Lan Hu^c and Da-Qi Wang^d

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China, ^cDepartment of Chemical Engineering, Lianyungang Technical College, Lianyungang 222005, People's Republic of China, and ^dCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: xutongtao_1968@163.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.010 Å R factor = 0.049 wR factor = 0.134 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

Bis(5,5-diphenylhydantoinato- κN^3)bis(1*H*-imid-azole- κN^3)copper(II) monohydrate

In the title compound, $[Cu(C_{15}H_{11}N_2O_2)_2(C_3H_4N_2)_2]\cdot H_2O$, the Cu^{II} ion has a distorted square-planar CuN_4 coordination environment. The crystal structure is stabilized by intermolecular hydrogen bonding.

Received 23 June 2006 Accepted 21 July 2006

Comment

As part of an ongoing investigation of Cu^{II} complexes, we report here the structure of the title Cu^{II} complex, (I).

The molecular structure of (I) is shown in Fig. 1. The Cu^{II} ion has a distorted square-planar CuN₄ coordination geometry, formed by two 5,5-diphenylhydantoin and two imidazole ligands. The N5–Cu1–N7 bond angle of 166.2 (3)° indicates the degree of distortion (Table 1). The dihedral angle between the imidazole rings is 87.0 (6)°.

The solvent water molecule links with the complex molecule via $O-H\cdots O$ hydrogen bonding, and intermolecular $N-H\cdots O$ hydrogen bonding occurs between neighbouring complex molecules (Table 2); these interactions stabilize the crystal structure of (I).

Experimental

To a stirred methanol solution (20 ml) of 5,5-diphenylhydantoin (1 mmol) and $Cu(CH_3COO)_2 \cdot 2H_2O$ (1 mmol) was added dropwise a methanol solution (10 ml) of imidazole (1.0 mmol) at room temperature. After stirring for 3 h at 320 K, the solution was filtered. Single crystals of (I) were obtained from the filtrate after 10 d.

Crystal data

$$\begin{split} & [\mathrm{Cu}(\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{N}_{2}\mathrm{O}_{2})_{2}(\mathrm{C}_{3}\mathrm{H}_{4}\mathrm{N}_{2})_{2}]\cdot\mathrm{H}_{2}\mathrm{O} \\ & M_{r} = 720.24 \\ & \mathrm{Orthorhombic}, \ P_{2_{1}2_{1}2_{1}} \\ & a = 8.615 \ (2) \ \mathrm{\AA} \\ & b = 16.576 \ (3) \ \mathrm{\AA} \\ & c = 24.680 \ (4) \ \mathrm{\AA} \\ & V = 3524.4 \ (12) \ \mathrm{\AA}^{3} \end{split}$$

Z = 4 D_x = 1.357 Mg m⁻³ Mo K α radiation μ = 0.67 mm⁻¹ T = 298 (2) K Prism, red 0.38 × 0.21 × 0.11 mm Data collection

Bruker APEX area-dectector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.784, T_{\max} = 0.930$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.134$ S = 0.976182 reflections 451 parameters H-atom parameters constrained 18479 measured reflections 6182 independent reflections 3915 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.061$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0594P)^2 \\ &+ 1.5734P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.53 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.38 \text{ e } \text{\AA}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ 2664 \text{ Friedel pairs} \\ \text{Flack parameter: } 0.52 (2) \end{split}$$

Table 1

Selected geometric parameters (Å, $^\circ).$

Cu1-N1	1.974 (4)	Cu1-N5	1.971 (5)
Cu1-N3	1.969 (4)	Cu1-N7	1.990 (5)
N3-Cu1-N5	91.10 (17)	N3-Cu1-N7	87.41 (18)
N3-Cu1-N1	174.78 (17)	N5-Cu1-N7	166.2 (2)
N5-Cu1-N1	93.71 (18)	N1-Cu1-N7	88.40 (19)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O4^{i}$	0.86	2.13	2.950 (5)	158
$N4-H4\cdots O2^{ii}$	0.86	2.02	2.827 (5)	156
N6-H6···O3 ⁱⁱⁱ	0.86	1.88	2.720 (7)	164
N8−H8···O5 ^{iv}	0.86	1.94	2.787 (7)	167
O5−H1···O4	0.85	1.90	2.714 (6)	160
O5−H3···O2	0.85	1.89	2.665 (6)	152
	<i>.</i>			1 2 (111)

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (iv) x + 1, y, z.

H atoms were positioned geometrically, with C-H = 0.93 and N-H = 0.86 Å, and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C,N)$. A

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids. H atoms have been omitted.

solvent-accessible void of 46 Å^3 was found in the final difference Fourier map but no solvent molecule could be located there.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Key Laboratory of Marine Biotechnology of Jiangsu Province.

References

Bruker (2003). SAINT (Version 6.45a) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.